Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Med Microbiol Immunol ; 2022 Apr 02.
Article in English | MEDLINE | ID: covidwho-2298572

ABSTRACT

The innate immune system is a powerful barrier against invading pathogens. Interferons (IFNs) are a major part of the cytokine-mediated anti-viral innate immune response. After recognition of a pathogen by immune sensors, signaling cascades are activated that culminate in the release of IFNs. These activate cells in an autocrine or paracrine fashion eventually setting cells in an anti-viral state via upregulation of hundreds of interferon-stimulated genes (ISGs). To evade the anti-viral effect of the IFN system, successful viruses like the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolved strategies to counteract both IFN induction and signaling. In fact, more than half of the about 30 proteins encoded by SARS-CoV-2 target the IFN system at multiple levels to escape IFN-mediated restriction. Here, we review recent insights into the molecular mechanisms used by SARS-CoV-2 proteins to suppress IFN production and the establishment of an anti-viral state.

2.
Life Sci Alliance ; 6(6)2023 06.
Article in English | MEDLINE | ID: covidwho-2273866

ABSTRACT

The IFN system constitutes a powerful antiviral defense machinery. Consequently, effective IFN responses protect against severe COVID-19 and exogenous IFNs inhibit SARS-CoV-2 in vitro. However, emerging SARS-CoV-2 variants of concern (VOCs) may have evolved reduced IFN sensitivity. Here, we determined differences in replication and IFN susceptibility of an early SARS-CoV-2 isolate (NL-02-2020) and the Alpha, Beta, Gamma, Delta, and Omicron VOCs in Calu-3 cells, iPSC-derived alveolar type-II cells (iAT2) and air-liquid interface (ALI) cultures of primary human airway epithelial cells. Our data show that Alpha, Beta, and Gamma replicated to similar levels as NL-02-2020. In comparison, Delta consistently yielded higher viral RNA levels, whereas Omicron was attenuated. All viruses were inhibited by type-I, -II, and -III IFNs, albeit to varying extend. Overall, Alpha was slightly less sensitive to IFNs than NL-02-2020, whereas Beta, Gamma, and Delta remained fully sensitive. Strikingly, Omicron BA.1 was least restricted by exogenous IFNs in all cell models. Our results suggest that enhanced innate immune evasion rather than higher replication capacity contributed to the effective spread of Omicron BA.1.


Subject(s)
COVID-19 , Interferons , Humans , Interferons/pharmacology , SARS-CoV-2 , Antiviral Agents/pharmacology
3.
J Virol ; 96(11): e0059422, 2022 06 08.
Article in English | MEDLINE | ID: covidwho-1840553

ABSTRACT

It has recently been shown that an early SARS-CoV-2 isolate (NL-02-2020) hijacks interferon-induced transmembrane proteins (IFITMs) for efficient replication in human lung cells, cardiomyocytes, and gut organoids. To date, several "variants of concern" (VOCs) showing increased infectivity and resistance to neutralization have emerged and globally replaced the early viral strains. Here, we determined whether the five current SARS-CoV-2 VOCs (Alpha, Beta, Gamma, Delta, and Omicron) maintained the dependency on IFITM proteins for efficient replication. We found that depletion of IFITM2 strongly reduces viral RNA production by all VOCs in the human epithelial lung cancer cell line Calu-3. Silencing of IFITM1 had modest effects, while knockdown of IFITM3 resulted in an intermediate phenotype. Strikingly, depletion of IFITM2 generally reduced infectious virus production by more than 4 orders of magnitude. In addition, an antibody directed against the N terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in induced pluripotent stem cell (iPSC)-derived alveolar epithelial type II cells, thought to represent major viral target cells in the lung. In conclusion, endogenously expressed IFITM proteins (especially IFITM2) are critical cofactors for efficient replication of genuine SARS-CoV-2 VOCs, including the currently dominant Omicron variant. IMPORTANCE Recent data indicate that SARS-CoV-2 requires endogenously expressed IFITM proteins for efficient infection. However, the results were obtained with an early SARS-CoV-2 isolate. Thus, it remained to be determined whether IFITMs are also important cofactors for infection of emerging SARS-CoV-2 VOCs that outcompeted the original strains in the meantime. This includes the Omicron VOC, which currently dominates the pandemic. Here, we show that depletion of endogenous IFITM2 expression almost entirely prevents productive infection of Alpha, Beta, Gamma, Delta, and Omicron SARS-CoV-2 VOCs in human lung cells. In addition, an antibody targeting the N terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in iPSC-derived alveolar epithelial type II cells. Our results show that SARS-CoV-2 VOCs, including the currently dominant Omicron variant, are strongly dependent on IFITM2 for efficient replication, suggesting a key proviral role of IFITMs in viral transmission and pathogenicity.


Subject(s)
Lung , Membrane Proteins , SARS-CoV-2 , Virus Replication , COVID-19/virology , Cell Line, Tumor , Humans , Lung/virology , Membrane Proteins/genetics , Membrane Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Virus Internalization
4.
J Virol ; 96(6): e0207721, 2022 03 23.
Article in English | MEDLINE | ID: covidwho-1714342

ABSTRACT

Emerging strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic, that show increased transmission fitness and/or immune evasion are classified as "variants of concern" (VOCs). Recently, a SARS-CoV-2 variant first identified in November 2021 in South Africa has been recognized as a fifth VOC, termed "Omicron." What makes this VOC so alarming is the high number of changes, especially in the viral Spike protein, and accumulating evidence for increased transmission efficiency and escape from neutralizing antibodies. In an amazingly short time, the Omicron VOC has outcompeted the previously dominating Delta VOC. However, it seems that the Omicron VOC is overall less pathogenic than other SARS-CoV-2 VOCs. Here, we provide an overview of the mutations in the Omicron genome and the resulting changes in viral proteins compared to other SARS-CoV-2 strains and discuss their potential functional consequences.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/immunology , COVID-19/virology , Genome, Viral , Humans , Immune Evasion , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism
5.
Nat Commun ; 12(1): 6855, 2021 11 25.
Article in English | MEDLINE | ID: covidwho-1537312

ABSTRACT

The bat sarbecovirus RaTG13 is a close relative of SARS-CoV-2, the cause of the COVID-19 pandemic. However, this bat virus was most likely unable to directly infect humans since its Spike (S) protein does not interact efficiently with the human ACE2 receptor. Here, we show that a single T403R mutation increases binding of RaTG13 S to human ACE2 and allows VSV pseudoparticle infection of human lung cells and intestinal organoids. Conversely, mutation of R403T in the SARS-CoV-2 S reduces pseudoparticle infection and viral replication. The T403R RaTG13 S is neutralized by sera from individuals vaccinated against COVID-19 indicating that vaccination might protect against future zoonoses. Our data suggest that a positively charged amino acid at position 403 in the S protein is critical for efficient utilization of human ACE2 by S proteins of bat coronaviruses. This finding could help to better predict the zoonotic potential of animal coronaviruses.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Protein Binding , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Animals , COVID-19/virology , COVID-19 Vaccines , Caco-2 Cells , Cloning, Molecular , HEK293 Cells , Humans , Molecular Dynamics Simulation , Mutation , Replicon , Species Specificity , Stem Cells , Zoonoses
6.
Nat Commun ; 12(1): 4584, 2021 07 28.
Article in English | MEDLINE | ID: covidwho-1387354

ABSTRACT

Interferon-induced transmembrane proteins (IFITMs 1, 2 and 3) can restrict viral pathogens, but pro- and anti-viral activities have been reported for coronaviruses. Here, we show that artificial overexpression of IFITMs blocks SARS-CoV-2 infection. However, endogenous IFITM expression supports efficient infection of SARS-CoV-2 in human lung cells. Our results indicate that the SARS-CoV-2 Spike protein interacts with IFITMs and hijacks them for efficient viral infection. IFITM proteins were expressed and further induced by interferons in human lung, gut, heart and brain cells. IFITM-derived peptides and targeting antibodies inhibit SARS-CoV-2 entry and replication in human lung cells, cardiomyocytes and gut organoids. Our results show that IFITM proteins are cofactors for efficient SARS-CoV-2 infection of human cell types representing in vivo targets for viral transmission, dissemination and pathogenesis and are potential targets for therapeutic approaches.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Antigens, Differentiation/genetics , Membrane Proteins/genetics , RNA-Binding Proteins/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/pharmacology , Antigens, Differentiation/metabolism , Binding Sites , COVID-19/virology , Gene Expression Regulation , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Interferon-beta/pharmacology , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Protein Binding , Protein Interaction Domains and Motifs , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/metabolism , Virus Attachment/drug effects
7.
STAR Protoc ; 2(4): 100781, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1356489

ABSTRACT

We present a protocol for analyzing the impact of SARS-CoV-2 proteins in interferon signaling using luciferase reporter assays. Here, the induction of defined promoters can be quantitatively assessed with high sensitivity and broad linear range. The results are similar to those obtained using qPCR to measure endogenous mRNA induction. The assay requires stringent normalization and confirmation of the results in more physiological settings. The protocol is adaptable for other viruses and other innate immune stimuli. For complete details on the use and execution of this protocol, please refer to Hayn et al. (2021).


Subject(s)
COVID-19/pathology , Gene Expression Regulation, Viral/drug effects , Interferons/pharmacology , Luciferases/metabolism , RNA, Messenger/metabolism , SARS-CoV-2/metabolism , Viral Proteins/metabolism , Antiviral Agents/pharmacology , COVID-19/metabolism , COVID-19/virology , Humans , Luciferases/genetics , Promoter Regions, Genetic , RNA, Messenger/genetics , SARS-CoV-2/drug effects , Viral Proteins/genetics , COVID-19 Drug Treatment
8.
Autophagy ; 17(9): 2659-2661, 2021 09.
Article in English | MEDLINE | ID: covidwho-1317864

ABSTRACT

As part of innate immune defenses, macroautophagy/autophagy targets viruses and viral components for lysosomal degradation and exposes pathogen-associated molecular patterns to facilitate recognition. However, viruses evolved sophisticated strategies to antagonize autophagy and even exploit it to promote their replication. In our recent study, we systematically analyzed the impact of individual SARS-CoV-2 proteins on autophagy. We showed that E, M, ORF3a, and ORF7a cause an accumulation of autophagosomes, whereas Nsp15 prevents the efficient formation of autophagosomes. Consequently, autophagic degradation of SQSTM1/p62 is decreased in the presence of E, ORF3a, ORF7a, and Nsp15. Notably, M does not alter SQSTM1 protein levels and colocalizes with accumulations of LC3B-positive membranes not resembling vesicles. Infection with SARS-CoV-2 prevents SQSTM1 degradation and increases lipidation of LC3B, indicating overall that the infection causes a reduction of autophagic flux. Our mechanistic analyses showed that the accessory proteins ORF3a and ORF7a both block autophagic degradation but use different strategies. While ORF3a prevents the fusion between autophagosomes and lysosomes, ORF7a reduces the acidity of lysosomes. In summary, we found that Nsp15, E, M, ORF3a, and ORF7a of SARS-CoV-2 manipulate cellular autophagy, and we determined the molecular mechanisms of ORF3a and ORF7a.


Subject(s)
COVID-19 , SARS-CoV-2 , Autophagosomes , Autophagy , Humans , Lysosomes
9.
Cell Rep ; 35(7): 109126, 2021 05 18.
Article in English | MEDLINE | ID: covidwho-1222854

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evades most innate immune responses but may still be vulnerable to some. Here, we systematically analyze the impact of SARS-CoV-2 proteins on interferon (IFN) responses and autophagy. We show that SARS-CoV-2 proteins synergize to counteract anti-viral immune responses. For example, Nsp14 targets the type I IFN receptor for lysosomal degradation, ORF3a prevents fusion of autophagosomes and lysosomes, and ORF7a interferes with autophagosome acidification. Most activities are evolutionarily conserved. However, SARS-CoV-2 Nsp15 antagonizes IFN signaling less efficiently than the orthologs of closely related RaTG13-CoV and SARS-CoV-1. Overall, SARS-CoV-2 proteins counteract autophagy and type I IFN more efficiently than type II or III IFN signaling, and infection experiments confirm potent inhibition by IFN-γ and -λ1. Our results define the repertoire and selected mechanisms of SARS-CoV-2 innate immune antagonists but also reveal vulnerability to type II and III IFN that may help to develop safe and effective anti-viral approaches.


Subject(s)
COVID-19/virology , SARS-CoV-2/immunology , Viral Proteins/immunology , Animals , Antiviral Agents/pharmacology , Autophagosomes/immunology , Autophagy/immunology , COVID-19/immunology , Cell Line , Chlorocebus aethiops , Exoribonucleases/immunology , HEK293 Cells , HeLa Cells , Humans , Immune Evasion , Immunity, Innate , Interferon Type I/metabolism , Interferons/metabolism , Receptor, Interferon alpha-beta/antagonists & inhibitors , Receptor, Interferon alpha-beta/immunology , SARS-CoV-2/pathogenicity , Vero Cells , Viral Nonstructural Proteins/immunology
10.
Nat Metab ; 3(2): 149-165, 2021 02.
Article in English | MEDLINE | ID: covidwho-1065968

ABSTRACT

Infection-related diabetes can arise as a result of virus-associated ß-cell destruction. Clinical data suggest that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing the coronavirus disease 2019 (COVID-19), impairs glucose homoeostasis, but experimental evidence that SARS-CoV-2 can infect pancreatic tissue has been lacking. In the present study, we show that SARS-CoV-2 infects cells of the human exocrine and endocrine pancreas ex vivo and in vivo. We demonstrate that human ß-cells express viral entry proteins, and SARS-CoV-2 infects and replicates in cultured human islets. Infection is associated with morphological, transcriptional and functional changes, including reduced numbers of insulin-secretory granules in ß-cells and impaired glucose-stimulated insulin secretion. In COVID-19 full-body postmortem examinations, we detected SARS-CoV-2 nucleocapsid protein in pancreatic exocrine cells, and in cells that stain positive for the ß-cell marker NKX6.1 and are in close proximity to the islets of Langerhans in all four patients investigated. Our data identify the human pancreas as a target of SARS-CoV-2 infection and suggest that ß-cell infection could contribute to the metabolic dysregulation observed in patients with COVID-19.


Subject(s)
Islets of Langerhans/virology , SARS-CoV-2/growth & development , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/biosynthesis , Angiotensin-Converting Enzyme 2/genetics , COVID-19/physiopathology , Cells, Cultured , Diabetes Mellitus , Female , Humans , Islets of Langerhans/cytology , Islets of Langerhans/physiopathology , Male , Pancreas, Exocrine/cytology , Pancreas, Exocrine/physiopathology , Pancreas, Exocrine/virology , Pancreatic Diseases/etiology , Pancreatic Diseases/virology , Serine Endopeptidases/biosynthesis , Serine Endopeptidases/genetics , Virus Internalization , Virus Replication
11.
Curr Opin Microbiol ; 59: 50-57, 2021 02.
Article in English | MEDLINE | ID: covidwho-1017019

ABSTRACT

Tripartite motif (TRIM) proteins are a highly versatile family of host-cell factors that play an integral role in the mammalian defense against pathogens. TRIM proteins regulate either transcription-dependent antiviral responses such as pro-inflammatory cytokine induction, or they modulate other important cell-intrinsic defense pathways like autophagy. Additionally, TRIM proteins exert direct antiviral activity whereby they antagonize specific viral components through diverse mechanisms. Here, we summarize the latest discoveries on the molecular mechanisms of antiviral TRIM proteins and also discuss current and future trends in this fast-evolving field.


Subject(s)
Antiviral Agents , Tripartite Motif Proteins , Animals , Antiviral Agents/metabolism , Autophagy/immunology , Cytokines/immunology , Humans , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism
12.
Cell Mol Gastroenterol Hepatol ; 11(4): 935-948, 2021.
Article in English | MEDLINE | ID: covidwho-917333

ABSTRACT

BACKGROUND AND AIMS: The COVID-19 pandemic has spread worldwide and poses a severe health risk. While most patients present mild symptoms, descending pneumonia can lead to severe respiratory insufficiency. Up to 50% of patients show gastrointestinal symptoms like diarrhea or nausea, intriguingly associating with prolonged symptoms and increased severity. Thus, models to understand and validate drug efficiency in the gut of COVID-19 patients are of urgent need. METHODS: Human intestinal organoids derived from pluripotent stem cells (PSC-HIOs) have led, due to their complexity in mimicking human intestinal architecture, to an unprecedented number of successful disease models including gastrointestinal infections. Here, we employed PSC-HIOs to dissect SARS-CoV-2 pathogenesis and its inhibition by remdesivir, one of the leading drugs investigated for treatment of COVID-19. RESULTS: Immunostaining for viral entry receptor ACE2 and SARS-CoV-2 spike protein priming protease TMPRSS2 showed broad expression in the gastrointestinal tract with highest levels in the intestine, the latter faithfully recapitulated by PSC-HIOs. Organoids could be readily infected with SARS-CoV-2 followed by viral spread across entire PSC-HIOs, subsequently leading to organoid deterioration. However, SARS-CoV-2 spared goblet cells lacking ACE2 expression. Importantly, we challenged PSC-HIOs for drug testing capacity. Specifically, remdesivir effectively inhibited SARS-CoV-2 infection dose-dependently at low micromolar concentration and rescued PSC-HIO morphology. CONCLUSIONS: Thus, PSC-HIOs are a valuable tool to study SARS-CoV-2 infection and to identify and validate drugs especially with potential action in the gut.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19 Drug Treatment , COVID-19/metabolism , Human Embryonic Stem Cells , Intestinal Mucosa , Organoids , SARS-CoV-2/physiology , Virus Replication/drug effects , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Caco-2 Cells , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/pathology , Human Embryonic Stem Cells/virology , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/virology , Organoids/metabolism , Organoids/pathology , Organoids/virology
13.
Nucleic Acids Res ; 48(19): 10890-10908, 2020 11 04.
Article in English | MEDLINE | ID: covidwho-817440

ABSTRACT

Although endogenous retroviruses (ERVs) are known to harbor cis-regulatory elements, their role in modulating cellular immune responses remains poorly understood. Using an RNA-seq approach, we show that several members of the ERV9 lineage, particularly LTR12C elements, are activated upon HIV-1 infection of primary CD4+ T cells. Intriguingly, HIV-1-induced ERVs harboring transcription start sites are primarily found in the vicinity of immunity genes. For example, HIV-1 infection activates LTR12C elements upstream of the interferon-inducible genes GBP2 and GBP5 that encode for broad-spectrum antiviral factors. Reporter assays demonstrated that these LTR12C elements drive gene expression in primary CD4+ T cells. In line with this, HIV-1 infection triggered the expression of a unique GBP2 transcript variant by activating a cryptic transcription start site within LTR12C. Furthermore, stimulation with HIV-1-induced cytokines increased GBP2 and GBP5 expression in human cells, but not in macaque cells that naturally lack the GBP5 gene and the LTR12C element upstream of GBP2. Finally, our findings suggest that GBP2 and GBP5 have already been active against ancient viral pathogens as they suppress the maturation of the extinct retrovirus HERV-K (HML-2). In summary, our findings uncover how human cells can exploit remnants of once-infectious retroviruses to regulate antiviral gene expression.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Endogenous Retroviruses/genetics , Gene Expression Regulation/immunology , HIV Infections/genetics , Promoter Regions, Genetic , T-Lymphocyte Subsets/immunology , Animals , CD4-Positive T-Lymphocytes/cytology , GTP-Binding Proteins/genetics , GTP-Binding Proteins/immunology , HEK293 Cells , HIV Infections/immunology , HIV-1 , Humans , Macaca mulatta , T-Lymphocyte Subsets/cytology
14.
Science ; 369(6508): 1249-1255, 2020 09 04.
Article in English | MEDLINE | ID: covidwho-654484

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the current coronavirus disease 2019 (COVID-19) pandemic. A major virulence factor of SARS-CoVs is the nonstructural protein 1 (Nsp1), which suppresses host gene expression by ribosome association. Here, we show that Nsp1 from SARS-CoV-2 binds to the 40S ribosomal subunit, resulting in shutdown of messenger RNA (mRNA) translation both in vitro and in cells. Structural analysis by cryo-electron microscopy of in vitro-reconstituted Nsp1-40S and various native Nsp1-40S and -80S complexes revealed that the Nsp1 C terminus binds to and obstructs the mRNA entry tunnel. Thereby, Nsp1 effectively blocks retinoic acid-inducible gene I-dependent innate immune responses that would otherwise facilitate clearance of the infection. Thus, the structural characterization of the inhibitory mechanism of Nsp1 may aid structure-based drug design against SARS-CoV-2.


Subject(s)
Betacoronavirus/chemistry , Immune Evasion , Immunity, Innate , Protein Biosynthesis , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Betacoronavirus/immunology , Betacoronavirus/metabolism , Betacoronavirus/physiology , Binding Sites , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cryoelectron Microscopy , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , Humans , Interferon-beta/genetics , Interferon-beta/metabolism , Models, Molecular , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Protein Binding , Protein Domains , Protein Interaction Domains and Motifs , Protein Structure, Secondary , RNA, Messenger/metabolism , Receptors, Immunologic , Ribosome Subunits, Small, Eukaryotic/chemistry , Ribosome Subunits, Small, Eukaryotic/metabolism , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL